DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

T.B.C. : 32/13/ET

TEST BOOKLET

CHEMICAL SCIENCE

PAPER III

Time Allowed : 21/2 Hours]

[Maximum Marks : 150

All questions carry equal marks.

INSTRUCTIONS

- Write your Roll Number only in the box provided alongside. Do not write anything else on the Test Booklet.
- This Test Booklet contains 75 items (questions). Each item comprises four responses (answers). Choose only one response for each item which you consider the best.
- 3. After the candidate has read each item in the Test Booklet and decided which of the given responses is correct or the best, he has to mark the circle containing the letter of the selected response by blackening it completely with ball point pen as shown below. *H.B. Pencil should not be used* in blackening the circle to indicate responses on the answer sheet. In the following example, response "C" is so marked :

- Do the encoding carefully as given in the illustrations. While encoding your particulars or marking the answers on answer sheet, you should blacken the circle corresponding to the choice in full and no part of the circle should be left unfilled. You may clearly note that since the answer sheets are to be scored/evaluated on machine, any violation of the instructions may result in reduction of your marks for which you would yourself be responsible.
 You have to mark all your responses ONLY on the ANSWER SHEET separately given.
- Responses marked on the Test Booklet or in any paper other than the answer sheet shall not be examined. Use ball point pen for marking responses.
- 6. All items carry equal marks. Attempt all items.
- Before you proceed to mark responses in the Answer Sheet fill in the particulars in the front portion of the Answer Sheet as per the instructions.
- After you have completed the test, hand over the OMR answer-sheet to the Invigilator.
 In case of any discrepancy found in English and Hindi Version in this paper, the English Version may be treated as correct and final.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

CHEMICAL SCIENCE

Paper III

Time Allowed : 21/2 Hours]

[Maximum Marks : 150

Note :-- This paper contains seventy five (75) multiple choice questions. Each question carries two (2) marks. Attempt all questions.

- 1. Molecular formula of Zeise's salt :
 - (A) $K_{2} \Big[Pt \Big(\eta^{2} C_{2}H_{4} \Big) Cl_{3} \Big] H_{2}O$ (B) $K \Big[Pt \Big(\eta^{2} C_{2}H_{4} \Big) Cl_{3} \Big] H_{2}O$ (C) $K_{2} \Big[Pt \Big(\eta^{5} - C_{5}H_{5} \Big) Cl_{3} \Big] H_{2}O$ (D) $K_{2} \Big[PtCl_{4} \Big] H_{2}O$
 - Shielding effect of electrons decreases in the order of :
 - (A) s > p > d > f (B) s > p > f > d
 - (C) f < d < p < s (D) d < f < p < s

3. Which one of the following molecules is not isoelectronic ?

- (A) BF_4^- (B) CO_3^{2-}
- (C) CH_4 (D) NH_4^+
- IUPAC nomenclature for the superheavy element having atomic number 109 is :
 - (A) Uni-nil-unium (B) Un-un-ennium
 - (C) Uni-nil-ennium (D) Un-en-ennium

T.B.C. : 32/13/ET-III

रसायन विज्ञान

प्रश्न-पत्र III

समय : 21/2 घण्टे]

2.

[पूर्णांक : 150

नोट :—इस प्रश्न-पत्र में पचहत्तर (75) बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न के दो (2) अंक हैं। सभी प्रश्नों के उत्तर दीजिये।

1. जीस लवण का आण्विक सूत्र क्या है ?

- $(A) \quad K_2 \Big[Pt \Big(\eta^2 C_2 H_4 \Big) Cl_3 \Big] H_2 O \qquad (B) \quad K \Big[Pt \Big(\eta^2 C_2 H_4 \Big) Cl_3 \Big] H_2 O$
- $(C) \quad K_2 \Big[Pt \Big(\eta^5 C_5 H_5 \Big) Cl_3 \Big] H_2 O \qquad (D) \quad K_2 \Big[Pt Cl_4 \Big] H_2 O$

इलेक्ट्रॉनों का परिरक्षण प्रभाव किस क्रम में घटता है ?

- (A) s > p > d > f (B) s > p > f > d
 - (C) f < d < p < s (D) d < f < p < s

3. निम्नलिखित में से कौनसा अणु आइसो-इलेक्ट्रॉनिक नहीं है ?

- (A) BF_4^- (B) CO_3^{2-}
- (C) CH_4 (D) NH_4^+

4. परमाणु संख्या 109 वाले अतिभारी (सुपरहैवी) तत्व का IUPAC नामकरण क्या है ?

- (A) यूनि-निल-युनियम (B) युन-युन-एनियम
- (C) यूनि-निल-एनियम (D) युन-एन-एनियम

T.B.C. : 32/13/ET-III

3

- 5. Which one of the following statements is wrong?
 - (A) Helium is the most common mobile phase in gas liquid chromatography
 - (B) In gas solid chromatography the mobile phase is a gas and the stationary phase is a solid
 - (C) In ion chromatography the stationary phase is finely-grounded ionexchange resin
 - (D) Conductivity detector is not well suited for ion chromatography
- The air-propane flame gives temperature of around 1950°C, which is best sensitivity for :
 - (A) Alkali metals
 - (B) Lanthanides
 - (C) Transition metals
 - (D) Elements which form highly refractory oxides
- 7. Which solute would provide the sharper end point in a titration with 0.10 M NaOH ?
 - (A) 0.10 M iodic acid (HIO₃)
- (B) 0.10 M hypochlorous acid

- (C) 0.10 M nitrous acid
- (D) 0.10 M salicylic acid

T.B.C. : 32/13/ET—III

	n n n	2.0		-			100	-
-5-	निम्नलिखित	T	T	aller	A 217	Inde	さ	2
υ.	11-11Clicati	-	21	AV1.121	9791	16.101	- Q	

(A) गैस लिक्विड क्रोमेटोग्राफी में हीलियम सर्वनिष्ठ गतिमान अवस्था है

- (B) गैस सॉलिड क्रोमेटोग्राफी में गतिमान अवस्था एक गैस है और स्थिर अवस्था एक ठोस है
- (C) आयन क्रोमेटोग्राफी में स्थिर अवस्था अति महीन घर्षित आयन विनिमय राल है

(D) आयन क्रोमेटोग्राफी के लिए चालक खोजी सुगमित नहीं है

6. वायु-प्रोपेन ज्वाला लगभग 1950°C ताप देती है जो किसके लिए सबसे अधिक संवेदनशील है ?

(A) क्षारक धातु

(B) लैन्थेनाइड

(C) ट्रान्जीशन धातुएँ

(D) उच्च अपवर्ती ऑक्साइड बनाने वाले तत्व bookboa

7. कौनसा विलेय 0.10 M NaOH के अनुमापन में अपेक्षाकृत स्पष्ट अन्तबिन्दु देगा ?
 (A) 0.10 M आयोडिक अम्ल (HIO₃) (B) 0.10 M हाइपोक्लोरस अम्ल
 (C) 0.10 M नाइट्रस अम्ल (D) 0.10 M सेलिसिलिक अम्ल

5

T.B.C. : 32/13/ET---III

The self-indicating silica gel (impregnated with cobalt chloride) turns pink on absorbing moisture and becomes blue on heating. The pink and blue colours are respectively due to :

(A) Co^{2+} and Co^{3+}

8.

9.

- (B) $\left[Co(H_2O)_6 \right]^{2+}$ and Co_2CO_3
- (C) $\left[Co(H_2O)_6 \right]^{2+}$ and $\left[CoCl_4 \right]^{2-}$
- (D) $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6\right]^{2+}$ and $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6\right]^{3+}$
- Which one of the following molecules *does not* obey the 18-electron rule ?
 - (A) $\left[Mn(CO)_6 \right]$ (B) $Fe(CO)_5$
 - (C) $\left[\operatorname{Cr(CO)}_{5}\right]^{2-}$ (D) $\left[\operatorname{Mn(CO)}_{4}\operatorname{Cl}_{2}\right]^{2-}$
- 10. Gem quality beryls are aquamarine (blue), emerald (Green) and red beryl, however pure beryl $(Be_3Al_2 Si_6O_{18})$ is colorless. The colours in aquamarine, emerald and red beryl is due to presence of :
 - (A) Fe^{2+} , Cr^{3+} and Mn^{2+} (B) Al^{3+} , Fe^{3+} and Cr^{3+}
 - (C) Mn^{2+} , Cr^{3+} and Co^{2+} (D) Mn^{2+} , Co^{2+} and Cr^{3+}

T.B.C. : 32/13/ET-III

- स्वसंकेतक सिलिका जैल (कोबाल्ट क्लोराइड के साथ संसेचित) नमी को अवशोषित कर गुलाबी हो जाता है और गर्म करने पर नीला हो जाता है। गुलाबी और नीले रंग क्रमश: किस कारण हैं ?
 - (A) Co²⁺ तथा Co³⁺

8.

- (B) $[Co(H_2O)_6]^{2+}$ तथा Co_2CO_3
- (C) $[C_0(H_2O)_6]^{2+}$ तथा $[C_0Cl_4]^{2-}$
- (D) $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6\right]^{2+}$ तथा $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6\right]^{3+}$
-). ि निम्नलिखित में से कौनसा अणु 18-इलेक्ट्रॉन नियम का **पालन नहीं** करता ?
 - (A) $\left[Mn(CO)_6 \right]$ (B) $Fe(CO)_5$
 - (C) $\left[Cr(CO)_5 \right]^{2^-}$ (D) $\left[Mn(CO)_4 Cl_2 \right]^{2^-}$
- रत्न गुण वैदूर्य, वेरुज (नीले), पन्ना (हरे) और लाल वैदूर्य हैं, जबकि शुद्ध वैदूर्य (Be₃Al₂ Si₆O₁₈)
 रंगहीन है। वेरुज, पन्ना और लाल वैदूर्य में रंग किसकी उपस्थिति से होते हैं ?
 - · (A) Fe²⁺, Cr³⁺ तथा Mn²⁺ (B) Al³⁺, Fe³⁺ तथा Cr³⁺
 - (C) Mn²⁺, Cr³⁺ तथा Co²⁺ (D) Mn²⁺, Co²⁺ तथा Cr³⁺

T.B.C. : 32/13/ET-III

11. Which of the following is/are paramagnetic ?

NO₂, NO, N₂O₄, N₂O₂, N₂O₅ only NO2 NO2 and NO (A) (B) (D) All of these NO, NO₂ and N₂O₅ (C) $d\pi$ -p π bonding is shown in : 12. NO₃⁻, NO₂⁻, N³⁻, CN⁻ (B) $P_2O_5, P_2O_3, PO_4^{3-}$ (A) (D) CO, NO, CO₂, NO₂ NH₃, PH₃, BiH₃ (C) According to the Lux-Flood definition XeF₆ behaves as 13. an oxidising agent (A) a base (B) a reducing agent (D) an acid (C) The IUPAC name of the complex $[Co(NO_2)(NH_3)_5]Cl$ is : 14. Nitrito-N-pentammine cobalt (III) chloride (A) Pentammine nitrito-N-cobalt (III) chloride (B) Pentammine nitrito-N-cobalt (II) chloride (C) Nitrito-N-pentammine cobalt (II) chloride (D)

T.B.C. : 32/13/ET-III

11. निम्नलिखित में से कौनसा/कौनसे अणु चुम्बकीय है/हैं ?

NO₂, NO, N₂O₄, N₂O₂, N₂O₅ (B) NO2 तथा NO (A) केवल NO2 (C) NO, NO2 तथा N2O5 dπ-pπ बन्धता कौन दर्शाता है ? 12.(A) $NO_3^-, NO_2^-, N^{3-}, CN^-$ (B) P_2O_5 , P_2O_3 , PO_4^{3-} (D) CO, NO, CO₂, NO₂ (C) NH₃, PH₃, BiH₃ लक्स-फ्लड परिभाषा के अनुसार XeF6 कैसे व्यवहार करता है ? 13. (B) आक्सीकारक अभिकर्ता क्षार (A) (C) अपचयकारक अभिकर्ता (D) अम्ल कॉम्प्लेक्स $\left[Co(NO_2) (NH_3)_5 \right] Cl$ का IUPAC नाम क्या है ? 14. (A) नाइट्रीटो-एन-पेन्टामाइन-कोबाल्ट (III) क्लोराइड (B) पेन्टामाइन-नाइट्टीटो-एन-कोबाल्ट (III) क्लोराइड पेन्टामाइन नाइट्रीटो-एन-कोबाल्ट (II) क्लोराइड (C) (D) नाइट्रीटो-एन-पेन्टामाइन कोबाल्ट (II) क्लोराइड

9

T.B.C. : 32/13/ET-III

- 15. In the hydroform ylation reaction the intermediate with $\rm CH_3--CH_2--CH_2--CH_2--CH_2$, $\rm Co(\rm CO)_4$:
 - (A) forms an acyl intermediate
 - (B) forms an adduct with olefin
 - (C) reacts with H₂
 - (D) eliminates propane
- 16. Waker's process uses the catalyst :
 - (A) $[PdCl_4]^{2-}$.
 - (B) $[Rh(CO)_2I_2]^-$
 - $(C) [Pt(C_2H_4)Cl_3]^-$
 - (D) Ziegler-Natta's catalyst
- 17. A solution containing 2.675 gm of $CoCl_2.6$ NH₃ (M. wt = 267.5) is passed through a cation exchanger. The chloride ions obtained in solutions were treated with excess of AgNO₃ to give 4.78 g of AgCl (M. wt = 143.5). The formula of the complex formed is :
 - $(A) \quad [CoCl_2(NH_3)_4]Cl \qquad (B) \quad [CoCl_3(NH_3)_3]$
 - (C) $[Co(NH_3)_6]Cl_3$ (D) $[CoCl(NH_3)_5]Cl_2$

T.B.C. : 32/13/ET—III

15. हाइड्रोफॉर्मिलेशन अभिक्रिया में CH_3 — CH_2 — CH_2 — $Co(CO)_4$ के साथ मध्यस्थ :

- (A) एक एसिल मध्यस्थ बनाता है
- (B) ओलिफिन के साथ एक अभिवर्तक बनाता है
- (C) H2 के साथ अभिक्रिया करता है
- (D) प्रोपेन को निकालता है

16. वाकर प्रक्रम किस उत्प्रेरक का उपयोग करता है ?

- (A) [PdCl₄]²⁻
- (B) $[Rh(CO)_2I_2]^-$
- $(C) [Pt(C_2H_4)Cl_3]^-$
- (D) त्सीग्लर-नट्टा उत्प्रेरक
- 17. 2.675 gm CoCl₂.6 NH₃ (आण्विक भार = 267.5) वाले एक विलयन को धनात्मक विनिमायक से होकर गुजारा जाता है। विलयन में प्राप्त क्लोराइड आयनों को, 4.78 g AgCl₃ (आण्विक भार = 143.5) देने के लिए अतिरिक्त AgNO₃ के साथ अभिकृत किया जाता है तो मिश्रण का सूत्र होगा :
 - (A) $[C_0Cl_2(NH_3)_4]Cl$ (B) $[C_0Cl_3(NH_3)_3]$
 - (C) $[Co(NH_3)_6]Cl_3$ (D) $[CoCl(NH_3)_5]Cl_2$

T.B.C. : 32/13/ET—III

- Nature has chosen Zn(II) ion at the active sites of many hydrolytic enzyme because :
 - (A) Zn(II) is a poor Lewis acid
 - (B) Zn(II) does not have chemically accessible redox states
 - (C) Zn(II) forms both four and higher coordination complexes
 - (D) Zn(II) forms weak complexes with oxygen donor ligands

19. Metals function needed in photosynthesis and respiration are :

- (A) Zn, Ga and Ca (B) Al, Ga, In
- (C) Mn, Fe, Co and Cu (D) Zn, Mg, Ca

20. Hydrated aluminium chloride is ionic and soluble in water results :

- (A) Al^{3+} and Cl^{-} ions
- (B) $[Al(H_2O)_6]^{3+}$ and Cl^- ions
- (C) $[AlCl_2(H_2O)_4]^+$ and $[AlCl_4(H_2O)_2]^-$
- (D) None of the above

T.B.C. : 32/13/ET-III

- प्रकृति ने Zn(II) आयन को अनेक जल अपघटनीय एन्जाइमों के सक्रिय स्थानों पर चुना है क्योंकि :
 - (A) Zn(II) एक दुर्बल लेविस अम्ल है
 - (B) Zn(II) की रासायनिकता सुगम रिडॉक्स अवस्था नहीं है
 - (C) Zn(II) चार या अधिक समन्वय मिश्र बनाता है
 - (D) Zn(II) दुर्बल ऑक्सीजनदाता के साथ दुर्बल मिश्र बनाता है

19. किन धातुओं के कार्य की आवश्यकता प्रकाश-संश्लेषण और श्वसन में होती है ?

- (A) Zn, Ga और Ca (B) Al, Ga, In
- (C) Mn, Fe, Co और Cu (D) Zn, Mg, Ca
- 20. जलयोजित ऐलुमिनियम क्लोराइड आयनिक होता है और जल में विलेय होने के परिणामस्वरूप क्या बनाता है ?
 - (A) Al³⁺ और Cl⁻ आयन
 - (B) [Al(H₂O)₆]³⁺ और Cl[−] आयन
 - (C) [AlCl₂(H₂O)₄]⁺ और [AlCl₄(H₂O)₂]⁻
 - (D) उपर्युक्त में से कोई नहीं

T.B.C. : 32/13/ET-III

Jahn-Teller effect affects the geometry of :

- (A) [Cr(H₂O)₆]³⁺ (B) $[Cu(NH_3)_4]^{2+}$ (D) $[Co(en)_3^*]^{3+}$
- (C) [Mn(H₂O)₆]²⁺

[* en : ethylene diammine]

22. Argon is used :

(A) to obtain low temperature

in radiotherapy for treatment of cancer (B)

- (C) in filling airships
- (D) in high temperature welding

Vaska's compound (I) reacts with acyl azides (II) form adduct (III) : 23.

The rate of adduct formation depends on nature of Ligand 'L'. Predict the correct order from the following :

(A) $N_3 < Cl < Br < I$ (B) $Cl < Br < I < N_3$ (C) $I < Br < Cl < N_3$ (D) $N_3 < I < Br < Cl$ T.B.C. : 32/13/ET-III

14

21.

21. जॉन-टेलर प्रभाव किसकी ज्यामिति को प्रभावित करता है ?

- (A) $[Cr(H_2O)_6]^{3+}$ (B) $[Cu(NH_3)_4]^{2+}$
- (C) $[Mn(H_2O)_6]^{2+}$ (D) $[Co(en)_3^*]^{3+}$

[* en : इथाइलीन डाइएमीन] 22. आर्गन किसमें प्रयुक्त होती है ?

- (A) निम्न ताप प्राप्त करने में
- (B) कैंसर के इलाज के लिए रेडियोथेरेपी में
- (C) वायुयानों को भरने में
- (D) उच्च ताप वेल्ड करने में

23. वास्का यौगिक (I) एसिल ऐजाइड (II) के साथ क्रिया कर अभिवर्तक (III) बनाता है :

अभिवर्तक निर्माण की दर लिगन्ड 'L' की प्रकृति पर निर्भर होती है। निम्नलिखित में से **सही** क्रम चुनिये :

- (A) $N_3 < Cl < Br < I$ (B) $Cl < Br < I < N_3$
- (C) $I < Br < Cl < N_3$ (D) $N_3 < I < Br < Cl$

T.B.C. : 32/13/ET-III

15

P.T.O.

10.02.ml

- 24. $NiCl_2[P(C_2H_5)_2 (C_6H_5)]_2$ exhibits temperature dependent magnetic behaviour (paramagnetic/diamagnetic). The co-ordination geometries of Ni²⁺ in the paramagnetic and diamagnetic states are :
 - (A) Tetrahedral and tetrahedral
 - (B) Square planar and square planar
 - (C) Tetrahedral and square planar
 - (D) Square planar and tetrahedral
- 25. The following reaction

 $\mathrm{S_2Cl_2} \xrightarrow{\mathrm{NH_3}} \ldots + \mathrm{S_8} + \mathrm{NH_4Cl}$

the product is :

(A) S_4N_2 (B) S_4N_4 (C) S_2N_2 (D) $S_3N_3^-$

26. Indicate which of the following is acceptable wave function ?

(A) $\psi = X^2$ (B) $\psi = e^{-X^2}$

(C) $\psi = \tan X$ (D) $\psi = X$.

T.B.C. : 32/13/ET-III

24. NiCl₂[P(C₂H₅)₂ (C₆H₅)]₂ ताप निर्भर चुम्बकीय व्यवहार (अनुचुम्बकीय/द्विचुम्बकीय) दर्शाता है। Ni²⁺ की अनुचुम्बकीय और द्विचुम्बकीय अवस्थाओं में निर्देशांक ज्यामिति क्या है ?

- (A) चतुर्फलक और चतुर्फलक
- (B) वर्ग समतल और वर्ग समतल
- (C) चतुर्फलक और वर्ग समतल
- (D) वर्ग समतल और चतुर्फलक

25. निम्नलिखित अभिक्रिया

 $S_2Cl_2 \xrightarrow{NH_3} \dots + S_8 + NH_4Cl$

में उत्पाद क्या है ?

(A) S_4N_2 (B) S_4N_4

(C) S_2N_2 (D) $S_3N_3^-$

26. निम्नलिखित में से स्वीकार्य तरंग फलन को बताइये :

(A) $\psi = X^2$ (B) $\psi = e^{-X^2}$

(C) $\psi = \tan X$ (D) $\psi = X$

T.B.C. : 32/13/ET-III

. 17

- 27. A projectile of mass 1.0 g is known to within 1 μm s⁻¹. Calculate the minimum uncertainty in its position :
 - (A) $5 \times 10^{26} \text{ ms}^{-1}$ (B) $5 \times 10^{26} \text{ m}$
 - (C) $5 \times 10^{-26} \text{ ms}^{-1}$ (D) $5 \times 10^{-26} \text{ m}$

28. An electron is confined to a one-dimensional box, 1 Å in extension, its ground state energy will be :

(A) 6.024×10^{-18} J (B) 6.024×10^{-24} J (C) 6.024×10^{-26} J (D) 6.024×10^{-16} J

29. The zero point energy of a harmonic oscillator is :

(A) $\hbar\omega$ (B) zero

(C)
$$\frac{1}{2}h\omega$$
 (D) $\frac{3}{2}\hbar\omega$

30. In the hydrogen molecule, when hydrogen is replaced by deuterium, what will happen to the rotational constant B ?

- (A) increases (B) becomes zero
- (C) decreases

(D) remains the same

T.B.C. : 32/13/ET-III

27. 1.0 g द्रव्यमान का एक अस्त्र 1 μm s⁻¹ के अन्दर जाना गया है। इसकी स्थिति की न्यूनतम अनिश्चितता का आकलन कीजिए :

- (A) $5 \times 10^{26} \text{ ms}^{-1}$ (B) $5 \times 10^{26} \text{ m}$
- (C) $5 \times 10^{-26} \text{ ms}^{-1}$ (D) $5 \times 10^{-26} \text{ m}$

28. एक इलेक्ट्रॉन एक एक-आयामी बॉक्स में 1 Å के विस्तार में इसकी मूल अवस्था ऊर्जा क्या होगी ?

(A) 6.024×10^{-18} J (B) 6.024×10^{-24} J (C) 6.024×10^{-26} J (D) 6.024×10^{-16} J

29. एक समन्वित दोलक की शून्य बिन्दु ऊर्जा क्या है ?

- (A) ħω(B) शून्य
- (C) $\frac{1}{2}h\omega$ (D) $\frac{3}{2}\hbar\omega$

30. हाइड्रोजन अणु में जब हाइड्रोजन को ड्यूटीरियम से प्रतिस्थापित किया जाता है तो घूर्णन स्थिरांक B में क्या होगा ?

(A) बढ़ेगा (B) शून्य हो जायेगा

(C) घटेगा

(D) वही रहेगा

T.B.C. : 32/13/ET-III

19

- 31. When you record a ultraviolet photoelectron spectrum of a molecule, we get progression. What information does this progression give ?
 - (A) Rotational energy levels
 - (B) Vibrational energy levels
 - (C) Electronic energy levels
 - (D) Franck-Condon principle

32. Which molecule among the following belongs to asymmetric top ?

- (A) CH_2CHCl (B) BCl_3
- (C) CH₃Cl (D) OCS
- 33. A gas (system) at 0.1 atm. pressure is enclosed in a cylinder fitted with a weightless, frictionless piston and the cylinder is placed in the surroundings, where the pressure is 1 atm. In the spontaneous process that occurs isothermally :

(A) entropy of the system increases, that of surrounding decreases

- (B) entropy of the system decreases, that of surrounding increases
- (C) entropy of the system and the surrounding increases
- (D) entropy of the system and the surrounding decreases

'.B.C. : 32/13/ET—III

31. जब हम एक अणु को पराबेंगनी वर्णक्रम पर देखते हैं तो हमें एक प्रगति प्राप्त होती है। इस प्रगति से किसकी जानकारी मिलती है ?

(A) घूर्णन ऊर्जा स्तर

(B) कम्पन ऊर्जा स्तर

(C) इलेक्ट्रॉनिक ऊर्जा स्तर

(D) फ्रेन्क-कॉन्डन सिद्धान्त

32. निम्नलिखित में से कौनसा अणु असममित शीर्ष से सम्बन्धित है ?

(A) CH₂CHCl (B) BCl₃

(C) CH₃Cl (D) OCS

33. 0.1 atm दाब पर एक गैस (प्रक्रम) को एक सिलिंडर में बन्द किया है जो भारहीन, घर्षण रहित पिस्टन के साथ है और सिलिंडर को 1 atm दाब के आसपास (चारों ओर) रखा गया है। स्वप्रवर्तित प्रक्रिया में, जो समऊष्मित होती है, उसमें :.

(A) प्रक्रम का उत्क्रम माप बढ़ेगा, उसके आसपास (चारों ओर) घटेगा

(B) प्रक्रम का उत्क्रम माप घटेगा, उसके आसपास (चारों ओर) बढ़ेगा

(C) प्रक्रम और चारों ओर का उत्क्रम माप बढ़ेगा

(D) प्रक्रम और चारों ओर का उत्क्रम माप घंटेगा

T.B.C. : 32/13/ET-III

34. If $\Delta G = 0$ for a reaction, then :

(A) $\Delta H = 0$ (B) $\Delta S = 0$

(C) k(equilibrium constant) = 0 (D) k = 1

35. $\frac{1}{2}$ mole of gas A and $\frac{1}{2}$ mole of gas B (both ideal gases) are allowed to mix freely at a constant pressure of 1 atm. and at constant temperature of 300 K. The entropy change during mixing is :

(A) $300 \text{ cals } \text{K}^{-1}$

(B) $2.303 \times 1.987 \log \frac{1}{2} \text{ cals K}^{-1}$

(C) 300×1.987 cals K⁻¹

(D) $2.303 \times 1.987 \log 2 \text{ cals } \text{K}^{-1}$

36. The no. of phases and components present in the following equilibria are :

 $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

(A) 3 and 2 (B) 3 and 3

(C) 2 and 3 (D) 2 and 2

37. The ionic strength of a solution containing 0.1 molal, each of $\rm CuSO_4$ and $\rm Al_2(SO_4)_3$ is :

(A) 0.2 m (B) 0.7 m

(C) 1.9 m (D) 1.0 m

T.B.C. : 32/13/ET-III

34. यदि एक अभिक्रिया के लिए △G = 0 है, तो :

(A)
$$\Delta H = 0$$
 (B) $\Delta S = 0$

(C) k(साम्यावस्था स्थिरांक) = 0 (D) k = 1

35. गैस A का 1/2 मोल और गैस B का 1/2 मोल (दोनों आदर्श गैसें) को स्वतन्त्र रूप से 1 atm के नियत दाब पर और 300 K के नियत ताप पर मिलाया जाता है। मिलन के दौरान उत्क्रम माप में बदलाव क्या होगा ?

(A) 300 cals K⁻¹

(B) $2.303 \times 1.987 \log \frac{1}{2} \text{ cals } \text{K}^{-1}$

(C) 300×1.987 cals K⁻¹

(D) $2.303 \times 1.987 \log 2 \text{ cals } \text{K}^{-1}$

36. निम्नलिखित साम्यावस्था में अवस्थाओं एवं अवयवों की संख्या क्या है ?

 $CaCO_{3(s)} \Longrightarrow CaO_{(s)} + CO_{2(g)}$

(A) 3 और 2(B) 3 और 3

(C) 2 और 3 (D) 2 और 2

37. $CuSO_4$ और $Al_2(SO_4)_3$ वाले विलयन, जिसमें प्रत्येक 0.1 मोलल है, की आयनिक शक्ति क्या होगी ?

- (A) 0.2 m (B) 0.7 m
- (C) 1.9 m (D) 1.0 m

T.B.C. : 32/13/ET-III

	a 3 ar		1
38.	The reduction potentials of Cr	$r_2 O_7^{2-}/\mathrm{Cr}^{3+}$ and $\mathrm{Cr}^3/\mathrm{Cr}$ are 1.3	33 V and
	- 0.74 V respectively. The reduct	tion potential of $Cr_2O_7^{2-}/Cr$ is :	
	N CE		
	(A) + 0.295 V	(B) $+ 0.195$ V	
	(C) + 0.590 V	(D) 1.770 V	
39.	The $\tilde{E_{cell}}$ of an Al-air battery is 2.	73 V and it involves a 12 electro	n process.
	The ΔG° in kJ will be :		
		i sa sa sa sa	
	(A) 3161.340 kJ	(B) – 32.76 kJ	
		and a second sec	
	(C) 32.76 kJ	$(D) \ - \ 3161.340 \ kJ$	
×			a.*
40.	The nuclear partition function of	ortho H ₂ will be :	
	New York Control of Co	a contract of the second se	
	(A) 1	(B) 2	
	(C) 3	(D) 4	·
			1 A A
41.	When the total number of con	nplex ions are 20 and the n	umber of
25	complex ions in the 3rd distributi	on is 5. What would be the pro	bability of
	distribution P(3) ?		
		9	
	$(\Lambda) \stackrel{\mathbf{I}}{=}$	$(\mathbf{P}) = \frac{3}{2}$	

(A) $\frac{1}{4}$ (B) $\frac{3}{5}$ (C) $\frac{1}{5}$ (D) $\frac{3}{4}$

T.B.C. : 32/13/ET—III

38.	$\mathrm{Cr}_2\mathrm{O}_7^{2^-}/\mathrm{Cr}^{3^+}$ और $\mathrm{Cr}^3/\mathrm{Cr}$ की अपचयन	क्षमता क्रमश: 1.33 V और - 0.74 V है।
	$\mathrm{Cr}_2\mathrm{O}_7^{2^-}/\mathrm{Cr}$ की अपचयन क्षमता क्या होगी	?
	(A) + 0.295 V	(B) + 0.195 V
	(C) + 0.590 V	(D) 1.770 V
39.	एक Al-एअर बैटरी की E _{cell} 2.73 V है और	ार इसमें 12 इलेक्ट्रॉन प्रक्रम शामिल होता है। ∆G°,
26	kJ में कितना होगा ?	
	(A) 3161.340 kJ	(B) – 32.76 kJ
	(C) 32.76 kJ	(D) – 3161.340 kJ
40.	ऑर्थो H_2 का नाभिकीय विभाजन कार्य क्या	होगा ? .
	(A) 1	(B) 2
	(C) 3	(D) 4
41.	जब कॉम्प्लेक्स आयनों की कुल संख्या 20 है अ	और तीसरे वितरण में कॉम्प्लेक्स आयनों की संख्या
	5 है तो P(3) वितरण की संभाव्यता क्या हो	ोगी ?
	(A) $\frac{1}{4}$	(B) $\frac{3}{5}$
	(C) $\frac{1}{5}$	(D) $\frac{3}{4}$

T.B.C. : 32/13/ET—III

25

P.T.O.

- 42. For the emf of a hydrogen electrode to be zero, the pressure of hydrogen required in neutral pH is :
 - (A) 10^{-7} atm

(B) 10⁻¹⁴ atm

(C) 0 atm

(D) 1 atm

43. Collisions are said to be elastic if :

- (A) momentum is conserved
- (B) kinetic energy is conserved
- (C) potential energy is conserved
- (D) mass is conserved
- 44. For the first order reaction, if the time taken for 50% of the reaction is "t" secs, the time required for completion of 99.99% reaction will be :
 - (A) 10 t (B) 5 t
 - (C) 2 t (D) 100 t
- 45. If activation energy of a reaction is 80.9 kJ mol⁻¹, calculate the fraction of molecules at 400°C which have enough energy to form products :
 - (A) 526×10^{-7} (B) 52.6×10^{-7}
 - (C) 5.26×10^{-7} (D) 0.526×10^{-7} .

T.B.C. : 32/13/ET-III

- 42. एक हाइड्रोजन इलेक्ट्रोड के लिए emf शून्य है, उदासीन pH में हाइड्रोजन के कितने दाब की आवश्यकता होगी ?
 - (A) 10^{-7} atm (B) 10^{-14} atm
 - (C) 0 atm
- (D) 1 atm
- 43. टक्कर को प्रत्यास्थ कहा जाता है यदि :.
 - (A) संवेग संरक्षित है
 - (B) गतिज ऊर्जा संरक्षित है
 - (C) स्थितिज ऊर्जा संरक्षित है
 - (D) द्रव्यमान संरक्षित है

3.8

- 44. प्रथम क्रम की अभिक्रिया के लिए यदि 50% अभिक्रियाओं के लिए "t" समय लिया गया है तो 99.99% अभिक्रियाओं को पूर्ण करने के लिए कितने समय की आवश्यकता होगी ?
 - (A) 10 t (B) 5 t
 - (C) 2 t (D) 100 t
- 45. यदि एक अभिक्रिया की क्रियाशीलता ऊर्जा 80.9 kJ mol⁻¹ है, तो 400°C पर उस अणु के अंश का आकलन कीजिए जिसमें उत्पाद बनाने की पर्याप्त ऊर्जा हो :
 - (A) 526×10^{-7} (B) 52.6×10^{-7}
 - (C) 5.26×10^{-7} (D) 0.526×10^{-7}

T.B.C. : 32/13/ET---III

27

The concept of detailed balance is closely related to the fundamental principles 46. of : Statistical mechanics (A) Quantum mechanics (B) (D) Electrochemistry Chemical kinetics (C) Stopped-flow technique is a convenient method to measure the reactions, 47. occurring in the time scale : 10^{-15} s (A) 10⁻³ s (B) (D) 10⁻¹⁰ s 10^{-6} s (C) Surfactants aggregate above : 48. Solubility product (A) Critical micelle temperature (B) Surface tension (C) Critical micelle concentration (D) The point defect which lowers the density of the material is : 49. (B) Frenkel Schottky (A)

(C) Both (A) and (B) (D) None of these

T.B.C. : 32/13/ET-III

46.	एक निर्दिष्ट तुला की संकल्पना किस मूलभूत सिद्धान्त से समीपता से सम्बन्धित है	?
	(A) क्वान्टम यांत्रिकी (B) सांख्यिकीय यांत्रिकी	
	(C) रासायनिक यांत्रिकी (D) विद्युत-रसायन	
47.	. अवरुद्ध बहाव तकनीक (Stopped flow technique) जो अभिक्रियाओं को नापने का	एक सुगम
	तरीका है, वह किस समय मापन में होता है .?	
	(A) 10^{-3} s (B) 10^{-15} s	
	(C) 10^{-6} s (D) 10^{-10} s	
48.	. पृष्ठकारक (सर्फेक्टेन्ट) किसके ऊपर इकट्ठे होते हैं ?	
	(Л) विलेयता उत्पाद	
	(B) क्रांतिक मिसेल तापमान	26
. '	(C) पृष्ठ तनाव	
	(D) क्रान्तिक मिसेल सांद्रता	
49.). वह बिन्दु विसंगत, जो पदार्थ के घनत्व को कम करता है, क्या है ?	
	(A) शॉट्की (B) फ्रेंकेल	
	(C) (A) और (B) दोनों (D) इनमें से कोई नहीं	
ΤR	BC 32/13/ET-III 29	P.T.O.

- 50. According to band theory of bonding, conduction occurs in very good conductors because :
 - (A) Valence band is full
 - (B) Conduction band is well separated from valence band
 - (C) Valence band and conduction band overlap
 - (D) Band gap is small

yields :

T.B.C. : 32/13/ET-III

50. बन्धता के बैण्ड सिद्धान्त के अनुसार चलन बहुत अच्छे सुचालकों में होता है क्योंकि :

- (A) संयोजक बैण्ड भरा होता है
- (B) चालक बैण्ड, संयोजक बैण्ड से अच्छी तरह पृथक् होता है
- (C) संयोजक बैण्ड और चालक बैण्ड परस्पर छादी होते हैं
- (D) बैण्ड रिक्ति छोटी है

से क्या बनेगा ?

T.B.C. : 32/13/ET---III

52. The correct product in the following reaction is :

T.B.C. : 32/13/ET-III

52. निम्नलिखित अभिक्रिया का सही उत्पाद क्या होगा ?

B =

Me

''''' Me

T.B.C. : 32/13/ET-III

33

- 53. The compound with odd molecular weight and intensity of M^{+2} peak 33% of M^+ peak must contain :
 - (A) odd no. of nitrogen and sulfur
 - (B) odd no. of nitrogen and bromine
 - (C) odd no. of nitrogen and chlorine
 - (D) even no. of nitrogen and chlorine
- 54. Which of the following statements is correct ?
 - (A) β -D-glucose and α -D-glucoside are more stable than α -D-glucose and β -D-glucoside
 - (B) α -D-glucose and β -D-glucoside are more stable than β -D-glucose and α -D-glucoside
 - (C) α -D-glucose and α -D-glucoside are more stable than β -D-glucose and β -D-glucoside
 - (D) β -D-glucose and β -D-glucoside are more stable than α -D-glucose and α -D-glucoside
- 55. 90% (+) Enantiomeric excess means :
 - (A) 90% (+) enantiomer and 10% racemic
 - (B) 95% (+) enantiomer and 5% (-) enantiomer
 - (C) 90% (+) and 10% (-) enantiomer
 - (D) Both (A) and (B) are correct

T.B.C. : 32/13/ET-III

- 53. विषम आण्विक भार एवं M⁺ शिखर का 33% वाले M⁺² शिखर की तीव्रता वाले यौगिक में क्या जरूर होना चाहिए ?
 - (A) नाइट्रोजन और सल्फर की विषम संख्या
 - (B) नाइट्रोजन और ब्रोमीन की विषम संख्या
 - (C) नाइट्रोजन और क्लोरीन की विषम संख्या
 - (D) नाइट्रोजन और क्लोरीन की सम संख्या
- 54. निम्नलिखित में से कौनसा कथन सही है ?
 - (A) β-D-ग्लूकोस और α-D-ग्लूकोसाइड, α-D-ग्लूकोस और β-D-ग्लूकोसाइड से अधिक स्थायी
 [†]
 - (B) α-D-ग्लूकोस और β-D-ग्लूकोसाइड, β-D-ग्लूकोस और α-D-ग्लूकोसाइड से अधिक स्थायी हैं
 - (C) α-D-ग्लूकोस और α-D-ग्लूकोसाइड, β-D-ग्लूकोस और β-D-ग्लूकोसाइड से अधिक स्थायी हैं
 - (D) β-D-ग्लूकोस और β-D-ग्लूकोसाइड, α-D-ग्लूकोस और α-D-ग्लूकोसाइड से अधिक स्थायी हैं
- 55. 90% (+) एनन्शियोमेरिक (प्रतिबिम्बरूपी) का क्या अर्थ है ?
 - (A) 90% (+) एनेन्शियोमर (प्रतिबिम्बरूप) और 10% रेसिमिक
 - (B) 95% (+) एनेन्शियोमर (प्रतिबिम्बरूप) और 5% (-) एनेन्शियोमर प्रतिबिम्ब रूप
 - (C) 90% (+) और 10% (-) एनेन्शियोमर (प्रतिबिम्बरूप)
 - (D) (A) और (B) दोनों सही हैं

T.B.C. : 32/13/ET-III

35

56. Cis-1, 2-dimethyl-cyclohexane-1, 2-diol on reaction with acid yields

57. At room temperature and high temperature N, N-dimethyl acetamide, acetamide shows :

(A) 3 and 2 signals respectively in 1 H NMR

(B) 2 and 3 signals respectively in ^{1}H NMR

(C) 2 and 2 signals respectively in ¹H NMR

(D) 3 and 3 signals respectively in ¹H NMR

58. Cyclohexene on reaction with osmium tetraoxide yields :

(A) trans-1, 2-cyclohexanediol

(B) cis-1, 2-cyclohexanediol

(C) mixture of cis and trans-1, 2-cyclohexanediol

(D) cyclohexanol

T.B.C. : 32/13/ET-III
56. सिस-1, 2-डाइमिथाइल-साक्लोहेक्सेन-1, 2-डाइऑल, अम्ल के साथ अभिक्रिया कर क्या बनाता है ?

57. सामान्य (कमरे के) ताप और उच्च ताप पर N, N-डाइमिथाइल ऐसीटामाइड, ऐसीटामाइड क्या दर्शाता है ?

- (A) ¹H NMR में क्रमश: 3 और 2 सिंग्नल
- (B) ¹H NMR में क्रमश: 2 और 3 सिंग्नल
- (C) ¹H NMR में क्रमश: 2 और 2 सिंग्नल
- (D) ¹H NMR में क्रमश: 3 और 3 सिंग्नल
- 58. साइक्लोहेक्सेन, ऑस्मियम टेट्राऑक्साइड के साथ अभिक्रिया कर क्या बनाता है ?
 - (A) ट्रान्स-1, 2-साइक्लोहेक्सेनीडीऑल
 - (B) सिस-1, 2-साइक्लोहेक्सेनीडीऑल
 - (C) सिस और ट्रांस-1, 2-साइक्लोहेक्सेनीडीऑल का मिश्रण
 - (D) साइक्लोहेक्सेनॉल

T.B.C. : 32/13/ET-III

37

59. Arrange the following carbonyls in order of their increasing carbonyl stretching frequency and choose the *correct* answer from the codes given below :

Codes :

- 60. In an alkaline solution, an amino acid contains two basic groups —NH₂ and —COO⁻ which is more basic and to which group will a proton preferentially go as acid is added to the solution and product will be :
 - (A) $-NH_2 > COO^-$, proton goes to $-NH_2$ and product will be $H_3N CH COO^-$
 - (B) $-COO^- > NH_2$, proton goes to $-NH_2$ and product will be $H_3N CH COO^-$
 - (C) $-NH_2 > COO^-$, proton goes to COO⁻ and product will be H_2N -CH-COOH
 - (D) $-NH_2 \sim -COO^-$, proton goes to either $-NH_2$ or $-COO^-$ and product will be a mixture of $H_3N^--CH-COO^-$ and $H_2N-CH-COOH$

59. निम्नलिखित कार्बोनाइलों को उनकी कार्बोनाइल फैलाव आवृत्ति के बढ़ते क्रम में लगाइये और नीचे दिए कूट से सही उत्तर का चयन कीजिए :

कूट :

- (A) III < II < I (B) II < I < III
- (C) I < II < III (D) I < III < II

60. एक क्षार विलयन में एक एमीनो अम्ल में दो क्षार समूह —NH₂ और —COO⁻ हैं। कौनसा समूह अपेक्षाकृत अधिक क्षारक है और प्रोटॉन प्राथमिकता के आधार पर किस समूह को जायेगा, जब विलयन में अम्ल मिलाया जाय तो उत्पाद क्या होगा ?

(A) $-NH_2 > COO^-$, प्रोटॉन $-NH_2$ में जायेंगे और उत्पाद $H_3N-CH-COO^-$ होगा |R

(B) —COO⁻ > NH₂, प्रोटॉन —NH₂ में जायेंगे और उत्पाद H₃N—CH—COO⁻ होगा | R

(C) $-NH_2 > COO^-$, प्रोटॉन COO^- में जायेंगे और उत्पाद H_2N -CH-COOH होगा | R

(D) $-NH_2 \sim -COO^-$, प्रोटॉन या तो $-NH_2$ या $-COO^-$ में जायेंगे और उत्पाद H_3N^+ $-CH^-COO^-$ और $H_2N^-CH^-COOH$ का मिश्रण होगा

C.B.C. : 32/13/ET-III

61. MS fragmentation of $CH_3CH_2CH_2$ —OMe will give base peak at :

- (A) m/z = 87 (B) m/z = 74.
- (C) m/z = 73 (D) m/z = 59

62. Reaction of 1-methyl-1-vinyl cyclobutane with HBr yields :

63. The correct name of the following compound is :

(A) (2R, 3R)-2-bromo-3-chlorobutane
(B) (2S, 3R)-2-chloro-3-bromobutane
(C) (2S, 3S)-2-bromo-3-chlorobutane
(D) (2R, 3S)-2-bromo-3-chlorobutane

T.B.C. : 32/13/ET-III

61. $CH_3CH_2CH_2$ —C—OMe का MS विखण्डन, क्षार शिखर कहाँ पर दर्शायेगा ? (A) m/z = 87 (B) m/z = 74(C) m/z = 73 (D) m/z = 59

62. 1-मिथाइल-1-विनाइल साइक्लोब्यूटेन की HBr के साथ अभिक्रिया करने पर क्या बनेगा ?

63. निम्नलिखित यौगिक का सही नाम क्या है ?

(A) (2R, 3R)—2—ब्रोमो—3—क्लोरोब्यूटेन
(B) (2S, 3R)—2—क्लोरो—3—ब्रोमोब्यूटेन

(C) (2S, 3S)—2—ब्रोमो—3—क्लोरोब्यूटेन

T.B.C. : 32/13/ET-III

41

- 64. In the IR spectrum of a compound X, there is a strong absorption at 1718 cm⁻¹. The ¹H NMR spectrum contains two signals : a quartet and a triplet with relative intensity of 2 : 3. Of the following compounds, which is 'X' most likely to be :
 - (A) CH₃—CH₂—COOH
 - (B) CH₃—CH₂—O—CH₂CH₃
 - (C) CH₃CH₂COCH₂CH₃
 - (D) CH₃CH₂OH

65. In the α -helix the hydrogen bonds :

(A) are roughly perpendicular to the axis of the helix

(B) occur mainly between electronegative atoms of the R groups

(C) occur only between some of the amino acids of the helix

(D) are roughly parallel to the axis of the helix

66. Fischer synthesis is used for :

(A) Indole

(B) Isoquinoline

(D) Pyridine

(C) Quinoline

T.B.C. : 32/13/ET-III

- 64. 'X' यौगिक के IR वर्णक्रम में 1718 cm⁻¹ पर शक्तिशाली अवशोषण होता है। ¹H NMR वर्णक्रम में दो संकेत हैं : एक चतुर्कूट और एक त्रिकूट जिनकी आनुपातिक तीव्रता 2 : 3 है। निम्नलिखित यौगिकों में से कौन 'X' हो सकता है ?
 - (A) CH₃-CH₂-COOH
 - (B) CH₃-CH₂-O-CH₂CH₃
 - (C) CH₃CH₂COCH₂CH₃
 - (D) CH₃CH₂OH
 - 65. α-हेलिक्स (कुण्डलीय) में हाइड्रोजन बन्ध :
 - (A) कुण्डली के अक्ष के लगभग अभिलम्ब में होते हैं
 - (B) R-समूहों के मुख्यत: इलेक्ट्रॉन ऋणात्मक परमाणुओं के बीच होते हैं
 - (C) कुण्डली के केवल कुछ ऐमीनो अम्लों के बीच होते हैं
 - (D) कुण्डली के अक्ष के लगभग समान्तर रहते हैं
 - 66. फिशर संश्लेषण किसके लिए प्रयुक्त होता है ?
 - (A) इण्डोल (B) आइसोक्विनोलीन
 - (C) विवनोलीन (D) पिरिडीन

T.B.C. : 32/13/ET-III

43

67. Reaction of 1° or 2° amine and two carbonyl compounds that leads to β -amino-carbonyl compound is known as :

(A) Michael reaction (B) Shapiro reaction

(C) Borton reaction

(D) Mannich reaction

68. Structure of DCC is :

T.B.C. : 32/13/ET-III

67. 1° या 2° ऐमीन और दो कार्बोनिल यौगिकों की अभिक्रिया से β-ऐमीनो-कार्बोनिल यौगिक बनता है, उसे क्या कहते हैं ?

(A) माइकेल अभिक्रिया(B) शैपिरो अभिक्रिया

(C) बोर्टान अभिक्रिया (D) मानिश अभिक्रिया

68. DCC की संरचना कौनसी है ?

i.

T.B.C. : 32/13/ET-III

45

69. The following reaction is an example of :

$$\begin{array}{c} \mathrm{S-Et} \\ | \\ \mathrm{Me-CH-CH_2OH} \xrightarrow{\mathrm{HCl}} \mathrm{Me-CH-CH_2-S-Et} \\ | \end{array}$$

Cl

- (A) Neighbouring group participation and anchimeric assistance
- (B) · Rearrangement
- (C) Substitution reaction
- (D) Non-classical carbocation
- 70. Paterno-Buchi reaction is :
 - (A) Room temperature reaction between an alkene and carbonyl compound that leads to oxetane ring
 - (B) Low temperature reaction between an alkene and carbonyl compound that leads to oxetane ring
 - (C) Photochemical reaction between an alkene and carbonyl compound that leads to oxetane ring
 - (D) Thermal reaction between an alkene and carbonyl compound that leads to oxetane ring
- 71. Sharpless catalyst is :
 - (A) Pd(PPh₃)₄ (B) Rh(PPh₃)₃Cl
 - (C) $(R-Cu-R)^{-}Li^{+}$ (D) $Ti(O-iPr)_{4}$

T.B.C. : 32/13/ET-III

निम्नलिखित अभिक्रिया किसका उदाहरण है ?

$$\begin{array}{c} \text{S--Et} \\ | \\ \text{Me--CH---CH}_2\text{OH} \xrightarrow{\text{HCl}} \text{Me----CH}_2\text{----S---Et} \\ | \\ \text{Cl} \end{array}$$

(A) पड़ोसी समूह भाग लेते हैं और एंन्कीमेरिक सहायता

- (B) पुनर्व्यवस्थापन
- (C) प्रतिस्थापन अभिक्रिया
- (D) अक्लासिकल कार्बोकैटायन
- पटर्नो-बुचि अभिक्रिया क्या है. ? 70.
 - (A) एक ऐल्कीन और कार्बोनिल यौगिक के बीच सामान्य ताप अभिक्रिया जिससे ऑक्सीटेन वलय बनता है
 - एक ऐल्कीन और कार्बोनिल यौगिक के बीच निम्न ताप पर अभिक्रिया जिससे ऑक्सीटेन (B) वलय बनता है
 - (C) एक ऐल्कीन और कार्बोनिल यौगिक के बीच प्रकाश-रासायनिक अभिक्रिया जिससे ऑक्सीटेन वलय बनता है
 - एक ऐल्कोन और कार्बोनिल यौगिक के बीच ऊष्मीय अभिक्रिया जिससे ऑक्सीटेन वलय (D) बनता है

47

- तीक्ष्णरहित उत्प्रेरक कौनसा है ? 71.
 - (B) Rh(PPh₃)₃Cl (A) Pd(PPh₃)₄
 - Ti(O-iPr)4 (C) (R-Cu-R)⁻Li⁺ (D)

T.B.C. : 32/13/ET-III

P.T.O.

69.

 $(iii) = Me(CH_2)_8OH$

'.B.C. : 32/13/ET-III

50

73.

T.B.C. : 32/13/ET—III

74. Which of the following compounds is aromatic ?

75. Which conformer of 1, 2-dibromo ethane will have zero dipole moment ?

T.B.C. : 32/13/ET—III

1

74. निम्नलिखित में से कौनसा यौगिक सुगन्ध वाला है ?

1, 2-डाइब्रोमो ईथेन का कौनसा समनुरूप का शून्य द्विध्रुव संवेग होगा ?

75.

53

т в с · 32/13/ЕТ—III